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Abstract

Heinrich Hertz dedicated the last four years of his life to a systematic
reformulation of mechanics. One of the main issues that troubled Hertz in
the traditional formulation was a ‘logical obscurity’ in the notion of force.
However, it is unclear what this logical obscurity was, hence it is unclear how
Hertz took himself to have avoided this obscurity in his own formulation of
mechanics.

In this paper, I argue that a subtle ambiguity in Newton’s original laws
of motion led to the development of two slightly different notions of force:
Newtonian and Lagrangian. I then show how Hertz employed the mathematical
apparatus of differential geometry to arrive at a unitary notion of force, thus
avoiding the logical obscurity that lurked in the customary representation of
mechanics.

1 Introduction

In 1890 Heinrich Hertz began a grand project in the foundations of physics, aiming
to systematically reformulate the theory of mechanics. Tragically, however, the next
four years of labor were to prove to be the last four years of Hertz’s short life. On
New Years Day of 1894, Hertz died just thirty-six years old while the manuscript
of his treatise was still in press. Thus the broader physics community greeted the
publication of The Principles of Mechanics Presented in a New Form with a mixture
of sadness and curiosity, wondering what it was, exactly, that Hertz had poured his
last energies into.

In his introduction, Hertz explains that his motivation to reformulate mechanics
stemmed from a sense of discomfort concerning a lack of clarity in the foundations
of the theory:

I have not attempted this task because mechanics has shown signs of inap-
propriateness in its applications, nor because it in any way conflicts with
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experience, but solely in order to rid myself of the oppressive feeling that
to me its elements were not free from things obscure and unintelligible.
(Hertz, 1899, 33)

In seeking to convey this issue to his readers, Hertz first discusses the elementary
problem of swinging a stone in a circle, aiming to illustrate how easy it is ‘to attach
to the fundamental laws considerations which are quite in accordance with the usual
modes of expression in mechanics and which yet are an undoubted hindrance to clear
thinking’ (Hertz, 1899, 5). He then offers three ‘general observations’ as further ev-
idence for this lack of clarity. The first is the dissatisfaction felt in introducing the
basic concepts and definitions of mechanics, and the desire ‘to move rapidly over the
introductory material on to examples which speak for themselves’ (Hertz, 1899, 7).
The second is the existence of disagreements concerning the rigor of supposedly ele-
mentary theorems in mechanics, disagreements which ‘in a logically complete science,
such as pure mathematics... [are] utterly inconceivable’ (ibid). The final observation
is the concern felt in the physics community over the ‘essence’ (Wesen) of force:

Weighty evidence seems to be furnished by the statements which one
hears with wearisome frequency, that the essence of force is still a mystery,
that one of the chief problems of physics is the investigation of the essence
of force, and so on. In the same way electricians are continually attacked
as to the essence of electricity. Now, why is it that people never in this
way ask what is the essence of gold, or what is the essence of velocity?
Is the essence of gold better known to us than that of electricity, or the
essence of velocity better than that of force? Can we by our conceptions,
by our words, completely represent the essence of any thing? Certainly
not. (Hertz, 1899, 7-8)

For Hertz, the fact that the essence of something is regarded as mysterious implies
the existence of an underlying state of confusion. Hence he prompts his readers
to consider why we might be drawn to ask such questions with regard to certain
concepts but not others:

I fancy the difference must lie in this. With the terms “velocity” and
“gold” we connect a large number of relations to other terms; and be-
tween all these relations we find no contradictions which offend us. We
are therefore satisfied and ask no further questions. But we have accu-
mulated around the terms “force” and “electricity” more relations than
can be completely reconciled amongst themselves. We have an obscure
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feeling of this and want to have things cleared up. Our confused wish
finds expression in the confused question as to the essence of force and
electricity.

One of the aims of Principles is thus to alleviate the confusion surrounding the notion
of force so as to avoid confused questions as to its essence from arising. As Hertz
famously put the matter:

the answer which we want is not really an answer to this question [what is
the essence of force?]. It is not by finding out more and fresh relations and
connections that it can be answered; but by removing the contradictions
existing between those already known, and thus perhaps by reducing their
number. When these painful contradictions are removed, the question as
to essences will not have been answered; but our minds, no longer vexed,
will cease to ask illegitimate questions. (Hertz, 1899, 8)

The present paper has two related goals. First, I aim to give an account of
the state of confusion that surrounded the notion of force as Hertz understood it.
Second, I aim to show how Hertz derived a perspicuous notion of force in his own
reformulation of mechanics so that our minds, no longer vexed, would cease to ask
illegitimate questions. I begin in section 2 with Hertz’s discussion of the ‘hindrance
to clear thinking’ encountered in the case of swinging a stone in a circle—a difficulty
whose roots, Hertz suggests, can be traced back to Newton’s laws of motion. In
seeking to understand the basis of Hertz’s concerns, I turn in section 3 to consider
the way in which the historical development of mechanics was understood in this
period, focusing in particular on Thomson and Tait (1879). With this in hand, I
argue in section 4 that there is indeed an ambiguity in the notion of force suggested
by Newton’s laws, and that Hertz was therefore well motivated in seeking a unitary
notion of force which avoided such ambiguity. In section 5, I provide an overview of
Hertz’s reformulation of mechanics, leading to a discussion in section 6 of the notion
of force that Hertz’s framework makes available. Section 7 concludes.

2 Swinging a stone in a circle

As already noted, Hertz’s first attempt to convey the lack of clarity in the foundations
of mechanics involves a discussion of a simple example: ‘We swing in a circle a stone
tied to a string, and in so doing we are conscious of exerting a force upon the stone’
(Hertz, 1899, 5). As Hertz notes, it is easy to confirm that in relation to the stone’s
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circular motion the magnitude of this force is consistent with Newton’s second law.
Newton’s third law then instructs us that an equal and opposite reaction force must
act from the stone on our hand. With regard to this opposing force, ‘the usual
explanation is that the stone reacts upon the hand in consequence of centrifugal
force, and that this centrifugal force is in fact exactly equal and opposite to the force
that we exert’ (Hertz, 1899, 5). It is here, however, that Hertz believes we encounter
a hindrance to clear thinking:

Now is this mode of expression permissible? Is what we call centrifugal
force anything else than the inertia of the stone? Can we, without de-
stroying the clearness of our conceptions, take the effect of inertia twice
into account—firstly as mass, secondly as force? In our laws of motion,
force was a cause of motion, and was present before the motion. Can
we, without confusing our ideas, suddenly begin to speak of forces which
are a consequence of motion? Can we behave as if we had already as-
serted anything about forces of this new kind in our laws, as if by calling
them “forces” we could invest them with the properties of forces? These
questions must clearly be answered in the negative. (Hertz, 1899, 5-6)

In section 4, below, I will return to this passage and offer an account of the concerns
that lie in the background of Hertz’s remarks. But we can begin by noting that there
are good reasons to feel dissatisfied with the appeal to centrifugal force as a way to
accommodate Newton’s third law in this context. The expression ‘centrifugal force’ is
normally used to describe what appears as a force in a rotating frame of reference. It
is thus a (potentially misleading) way of describing how things appear to an observer
undergoing circular motion. To illustrate: an insect clinging to the swinging stone
would feel as if a force was pulling it off the surface, just as an observer inside a
sharply accelerating vehicle would feel as if a force was pulling them backwards. For
this reason, it is natural to call such forces inertial forces.1 But Hertz complains:
‘what now becomes of the demands of the third law, which requires a force exerted
by the inert stone upon the hand, and which can only be satisfied by an actual force,
not a mere name?’ (Hertz, 1899, 6) Indeed, as things stand, appealing to centrifugal
force is a confusing way to account for the force on our hand when swinging the
stone. That force is not an inertial force and does not arise because our hand is
undergoing circular motion (it isn’t).

1Arnold Sommerfeld calls centrifugal and similar inertial forces ‘fictitious’, see Sommerfeld (1952)
59. In contemporary discussions they are more frequently called pseudo-forces.
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After making this brief critique of such ‘usual modes of expression in mechanics’,
Hertz gestures at what he takes to be the ultimate source of the problem—a deep-
rooted tension in the foundations of the theory:

I do not regard these as artificial difficulties wantonly raised: they are
objections which press for an answer. Is not their origin to be traced back
to the fundamental laws? The force spoken of in the definition and in the
first two laws acts upon a body in one definite direction. The sense of
the third law is that forces always connect two bodies, and are directed
from the first to the second as well as from the second to the first. It
seems to me that the conception of force assumed and created in us by
the third law on the one hand, and the first two laws on the other hand,
are slightly different. This slight difference may be enough to produce
the logical obscurity of which the consequences are manifest in the above
example. (Hertz, 1899, 6)

Here we have arrived at Hertz’s most explicit indication of the underlying issue:
Newton’s third law presents a slightly different conception of force compared to the
first and second laws, and it is this subtle ambiguity that is responsible for the ‘logical
obscurity’ manifest in the case of the swinging stone.

However, Hertz’s remarks failed to convince many of his readers. George Francis
FitzGerald, for example, thought that Hertz had simply misunderstood Newton’s
third law:

Hertz seems to consider that there is some outstanding confusion in ap-
plying the principle of equality of action and reaction, and appears to
hold that by this principle the action on the body requires some reaction
in the body whose acceleration is the effect of the force. He does not
seem fully to appreciate that action and reaction are always on differ-
ent bodies. From his consideration of this, and from a general review
of our conception of force, he concludes that there is something mysteri-
ous about it, that its nature is a problem in physics, like the nature of
electricity. (Hertz and Mulligan, 1994, 372)

FitzGerald’s suggestion is that Hertz mistakenly thought that action-reaction force
pairs act on one body, rather than on different bodies. But as should already be
apparent, Hertz was perfectly aware that action-reaction force pairs act on different
bodies, and that, in the case of the swinging stone, the reaction to the force exerted
by our hand on the stone ‘requires a force exerted by the inert stone upon the hand’
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(Hertz, 1899, 6). Furthermore, FitzGerald’s reading is unsatisfactory insofar as it
is implausible that Hertz had such an elementary misunderstanding of Newton’s
third law and that this would have led him to spend the last four years of his life
reformulating mechanics.

That being said, it is true that Hertz did not do much more than gesture at the
underlying problem. Following his suggestion that the notion of force in Newton’s
third law may be slightly different to that in the first two laws, Hertz remarks
that it is not necessary to discuss further examples. Instead, he appeals to ‘general
observations as evidence in support of the above-mentioned doubt’ (Hertz, 1899, 6).
He also appeals to the fact that similar doubts have been expressed by a number
of other physicists as well: ‘It is not going too far to say that this representation
has never attained scientific completeness... This is also the opinion of distinguished
physicists who have thought over and discussed these questions’ (Hertz, 1899, 8). In
all this, Hertz is only motivating the need for a logically perspicuous reformulation of
mechanics, and stops short of decisively demonstrating the need for it. Uncovering
the underlying basis of Hertz’s concern is evidently left to us.

3 ‘The customary representation of mechanics’

In order to make progress in identifying Hertz’s logical obscurity, we need to appre-
ciate Hertz’s understanding of the domain in which it lies—the customary represen-
tation of mechanics :

By this we mean the representation, varying in detail but identical in
essence, contained in almost all text-books which deal with the whole of
mechanics, and in almost all courses of lectures which cover the whole
of this science. This is the path by which the great army of students
travel and are inducted into the mysteries of mechanics. It closely follows
the course of historical development and the sequence of discoveries. Its
principal stages are distinguished by the names of Archimedes, Galileo,
Newton, Lagrange. (Hertz, 1899, 4)

Newton, unsurprisingly, plays an especially important role in the development of
this representation of mechanics. However, Hertz notes that Newton’s laws were
not sufficient for the full development of this representation without the addition of
d’Alembert’s principle:

[Newton’s] laws contain the seed of future developments; but they do not
furnish any general expression for the influence of rigid spacial connec-
tions. Here d’Alembert’s principle extends the general results of statics
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to the case of motion, and closes the series of independent fundamen-
tal statements which cannot be deduced from each other. From here on
everything is deductive inference. (Hertz, 1899, 5)

Hertz’s brief remarks gesture at a rich and complex history leading up to the text-
books and lecture courses of his time. Following Cornelius Lanczos, it is possible
to distinguish two prominent traditions in this history: a vectorial tradition and
a variational tradition.2 In the vectorial tradition, the primary objects are force
vectors between point-masses. Complex systems can be regarded as arrays of such
points, each pair of which has equal and opposite forces acting along the line con-
necting them. Classical models of the solar system exemplify a paradigm application
of this tradition. By contrast, in the variational tradition the primary object is a
scalar representation of some overall property of the system. Applications of ‘ex-
tremal’ principles, such as various formulations of the principle of least action, are
the home territory of this tradition. In the remainder of this section I will recon-
struct the way in which d’Alembert’s principle can be seen to provide a pathway
starting from a vectorial interpretation of Newton’s laws of motion and leading to
the variational techniques of Lagrange and others. To make clear the received under-
standing of this historical development by Hertz and his contemporaries, I will focus
on William Thomson (later Lord Kelvin) and Peter Tait’s seminal 1879 Treatise of
Natural Philosophy (henceforth ‘TNP’).3 However, given that Hertz considered the
customary representation of mechanics to be ‘identical in essence’ in almost all the
major textbooks and lecture courses of his time, nothing important should turn on
the particulars of Thomson and Tait’s approach.

Thomson and Tait dedicate the entirety of their first chapter to kinematics, con-
cluding with a general discussion of the relationship between the constraints acting
on a system and that system’s degrees of freedom, i.e. the number of independent
variables needed to characterize its motion (TNP §195). They survey a number
of standard examples: a single point moving freely in space has three degrees of
freedom, whereas a point constrained to move on a surface has just two degrees of
freedom, and so on (TNP §196). They then arrive at a more general conception of
the coordinates which jointly specify the position and motion of an arbitrary system:

if ψ, φ, θ, etc., denote any number of elements, independently variable,
which, when all given, fully specify its position and configuration, being

2See Lanczos (1962) xvii.
3When Hertz lists some of his sources in his preface, he writes ‘I have naturally consulted the

better-known text-books of general mechanics, and especially Thomson and Tait’s comprehensive
treatise’ (Hertz, 1899, xxiv).
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of course equal in number to the degrees of freedom to move enjoyed by
the system, these elements are its co-ordinates. (TNP §204)

In contemporary terminology, such independent variables are general (or general-
ized) coordinates for a given system. Thus, for example, rather than describe the
configuration of a rigid body consisting of n material points with 3n rectangular co-
ordinates (three to specify the position of every point), it is vastly more economical
to use six general coordinates—three to describe the position of one point (the center
of mass, say) and three angles to describe the orientation of the body around this
point. More broadly, the use of general coordinates leads to highly abstract descrip-
tions of mechanical systems in terms of their degrees of freedom, and the coordinates
themselves do not have to have the dimensions of position.4

Thomson and Tait turn to Newton’s laws in their second chapter, “Dynamical
Laws and Principles.” As kinematics had been treated as a ‘subject of pure geometry’
(TNP §205), there had been no need to discuss the intrinsically dynamical notions of
matter and force until this point. The initial introduction of these notions, however,
is very brief:

We cannot, of course, give a definition of Matter which will satisfy the
metaphysician, but the naturalist may be content to know matter as that
which can be perceived by the senses, or as that which can be acted upon
by, or can exert, force. The latter, and indeed the former also, of these
definitions involves the idea of Force, which, in point of fact is a direct
object of sense; probably of all our senses, and certainly of the “muscular
sense.” (TNP §207)

Here we have a somewhat vague appeal to the paradigm cases of matter (and force)
manifest in our everyday interactions with material objects. Thomson and Tait then
follow Newton in defining mass as ‘quantity of matter,’ which is in turn defined as
the product of volume and density. They note immediately, however, that this is
really a definition of density rather than mass (TNP §208). A little later they define
force as ‘any cause which tends to alter a body’s natural state of rest, or of uniform
motion in a straight line’ (TNP §217). Though there is much left to be desired by
such definitions,5 we can at least recognize the intuitive notions that Thomson and
Tait have in view. With force in particular, they evidently have in view the familiar
pushes and pulls manifest in our tactile interactions with ordinary objects. Such

4For some further discussion of general coordinates, see North (forthcoming) §2.2.
5Hertz himself complains about both; see Hertz (1899) 7.
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forces are typically represented ‘as velocities are, by straight lines in their directions,
and of lengths proportional to their magnitudes’ (TNP §227); represented, that is,
by three-dimensional vectors in ordinary Euclidean space. For want of a label, let us
call forces understood in this way ‘Newtonian’.

After introducing a number of other standard dynamical notions (momentum,
kinetic energy, work, etc.), Thomson and Tait then turn to Newton’s laws themselves.
Newton’s own statement of the laws is as follows:6

Law I: Every body preserves in its state of being or of moving uniformly
straight forward, except insofar as it is compelled to change its state by
forces impressed.

Law II: A change in motion is proportional to the motive force impressed
and takes place along the straight line in which that force is impressed.

Law III: To any action there is always an opposite and equal reaction;
in other words, the action of two bodies upon each other are always equal
and opposite in direction.

Thomson and Tait interpret the first two laws in a familiar way. Beginning with
the first, they gloss its content as follows: any force-free body moves through equal
spaces in equal times; and, in the reference frame of such a body, all other force-free
bodies also move through equal spaces in equal times. As regards the second law,
Thomson and Tait’s discussion fleshes out the vectorial aspects of Newtonian forces:

If any force generates motion, a double force will generate double motion,
and so on, whether simultaneously or successively, instantaneously, or
gradually applied. And this motion, if the body was moving beforehand,
is either added to the previous motion if directly conspiring with it; or
is subtracted if directly opposed; or is geometrically compounded with it
according to the kinematical principles already explained... (TNP §252)

The ‘quantity of motion’ altered by a force is of course the momentum of the body
in question. Hence Thomson and Tait’s remarks gesture at a vectorial treatment of
momenta and forces as well as a statement of the second law in terms of changes of
momentum rather than mass and acceleration.

With regard to Newton’s third law, Thomson and Tait’s discussion begins in a
similarly familiar way. In particular, they spell out the natural interpretation of the

6Translation (based on the third edition of Newton’s Principia from 1726) by I. Bernard Cohen
and Anne Whitman, published in Newton (2004) 70-71.
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action-reaction principle in terms of Newtonian forces: if one body pushes or pulls
another, then the second body will pull or push the first with an equal magnitude
and in the opposite direction. Thus we are prompted to bring to mind the kinds
of examples that are still ubiquitous in introductory physics textbooks: ‘If any one
presses a stone with his finger, his finger is pressed with the same force in the opposite
direction by the stone. A horse towing a boat on a canal is dragged backwards by a
force equal to that which he impresses on the towing-rope forwards’ (TNP §262).

It is at this juncture, in the continuation of their discussion of Newton’s third
law, that Thomson and Tait introduce d’Alembert’s principle. In fact, they argue
that d’Alembert’s principle was implicitly understood by Newton as a consequence
of his third law, and even claim that the germ of the ‘splendid dynamical theory’ of
Lagrange can be derived from the Scholium appended to the third law.7 On Thomson
and Tait’s reading, it is here that Newton points out that ‘forces of resistance against
acceleration are to be reckoned equal and opposite to the actions by which the
acceleration is produced’ (TNP §264). They continue:

by the principle of superposition of forces in equilibrium, all the forces
acting on points of the system form, with the reactions against accelera-
tion, an equilibrating set of forces on the whole system. (TNP §264)

Thomson and Tait claim that this balancing of each force acting on a system with the
corresponding reaction against acceleration is ‘the celebrated principle first explicitly
stated, and very usefully applied, by d’Alembert in 1742’ (TNP §264).8 As they go
on to show, extremely general equations of motion can be derived from this principle.
In order to get to this derivation, however, it is first necessary to introduce the notion
of a conservative system as well as the principle of virtual velocities.

In a conservative system, ‘the mutual forces between its parts always perform, or
always consume, the same amount of work during any motion whatever, by which it
can pass from one configuration to another’ (TNP §271). The claim here is that the
work done (whether positive or negative) during the motion of a conservative system
is path-independent, depending only on the system’s initial and final configurations.
This has immediate and important consequences which Thomson and Tait begin
to spell out in their ensuing remarks. In particular, in a conservative system the
potential energy ‘depends solely on [the system’s] configuration at that instant’ (TNP
§274). This means that the potential energy of a conservative system can always be
represented by a scalar function. Note that systems which cannot be assigned such

7TNP §263; see also §242.
8For a discussion of the original formulation of the principle by d’Alembert himself, see Fraser

(1985)
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a scalar potential function—typically, systems involving friction—often cannot be
treated by the ‘abstract dynamics’ which Thomson and Tait are on their way to
developing. Thomson and Tait then offer the following statement of the principle of
virtual velocities:

A material system, whose relative motions are unresisted by friction, is in
equilibrium in any particular configuration if, and is not in equilibrium
unless, the work done by the applied forces is equal to the potential
energy gained, in any possible infinitely small displacement from that
configuration. (TNP §289)

As Thomson and Tait note, Lagrange made this ‘celebrated principle... the basis of
his Mécanique Analytique’ (TNP §289).

On the basis of this principle, Thomson and Tait’s derivation of the equations
of motion for an arbitrary mechanical system is the following.9 Consider a system
of n material points (with some number of connections between them) acted on by
external forces. Appealing to a rectangular coordinate system, let the position of the
ν-th point be given by x3ν−2, x3ν−1, x3ν and let the components of the applied force
acting on it be given by F3ν−2, F3ν−1, F3ν . Furthermore, for notational convenience,
let the mass of the point be m3ν−2 = m3ν−1 = m3ν .

10 The application of d’Alembert’s
principle then comes to the following: each component of the applied force, Fν , is
balanced by the corresponding ‘reaction against acceleration,’ −mẍν . Making use
of the principle of virtual velocities, we can now apply d’Alembert’s principle to the
whole system in terms of the variations of the system’s coordinates, δxν :

3n∑
ν=1

(Fν −mν ẍν) δxν = 0

If there are m connections between the points, these can be represented by m con-
straint equations of the following form:

f1(x1, ..., x3n) = 0 . . . fm(x1, ..., x3n) = 0

Taking the variations of these equations gives:

df1
dx1

δx1 + ...+
df1
dx3n

δx3n = 0 . . .
dfm
dx1

δx1 + ...+
dfm
dx3n

δx3n = 0

9Note that I have made a number of notational changes; cf. TNP §293.
10Here I follow Hertz (1899) §31.
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We can multiply each of these equations by a Lagrange multiplier, λ, and add them
all to the d’Alembertian equilibrium condition. Equating coefficients of δxν then
gives the following 3n equations:

λ1
df1
dx1

+ ...+ λm
dfm
dx1

+ F1 −m1ẍ1 = 0

...

λ1
df1
dx3n

+ ...+ λm
dfm
dx3n

+ F3n −m3nẍ3n = 0

These equations are sufficient to determine the m Lagrange multipliers as well as the
3n −m independent variables to which the xν are reduced by the constraint equa-
tions. Having derived such equations, Thomson and Tait declare that d’Alembert’s
principle comprehends ‘every possible condition of every case of motion,’ and that
the equations of motion ‘in any particular case are, as Lagrange has shown, deduced
from it with great ease’ (TNP §293).

In more contemporary treatments it is straightforward to use d’Alembert’s princi-
ple to derive one of several variational principles which involve finding the stationary
value of a scalar quantity. For example, defining the system’s Lagrangian, L, as
the difference between kinetic and potential energy, and requiring that all virtual
displacements are zero at ti and tf , it is easy to show that the requirement that the
total virtual work performed by the system is zero is equivalent to the following:11

δ

∫ tf

ti

L dt = 0

This is a statement of Hamilton’s Principle. In words: given fixed endpoints, the
motion of a mechanical system always occurs in such a way that the integral of the
Lagrangian becomes stationary for arbitrary variations of the system’s configuration.

It is in this kind of way that d’Alembert’s principle paved the way to a battery
of powerful variational techniques, including Lagrange’s equations of motion and
various formulations of the principle of least action. Thus, not only was d’Alembert’s
principle a pivotal advance in the history of mechanics, it also provided a bridge from
the vectorial approach exemplified by Thomson and Tait’s interpretation of Newton’s
laws of motion to the ‘abstract dynamics’ exemplified by the variational techniques
of Lagrange and others.

11See Lanczos (1962) 112-113 and Butterfield (2004) 72.
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4 A logical obscurity

According to d’Alembert’s principle, all the forces acting on a system are balanced
by equal and opposite ‘reactions against acceleration.’ These reactions are there-
fore naturally regarded as themselves forces. Returning to Lanczos, we can say
that d’Alembert’s principle ‘introduces a new force, the force of inertia, defined as
the negative of the product of mass and acceleration’ (Lanczos, 1962, 92). Hence
d’Alembert’s principle itself can be understood as the claim that ‘any system of
forces is in equilibrium if we add to the impressed forces the forces of inertia’ (Lanc-
zos, 1962, 90; emphasis in original). However, here we may recall the concerns that
Hertz raised in the context of swinging a stone in a circle:

Can we, without destroying the clearness of our conceptions, take the
effect of inertia twice into account—firstly as mass, secondly as force?
In our laws of motion, force was a cause of motion, and was present
before the motion. Can we, without confusing our ideas, suddenly begin
to speak of forces which are a consequence of motion? Can we behave
as if we had already asserted anything about forces of this new kind in
our laws, as if by calling them “forces” we could invest them with the
properties of forces? (Hertz, 1899, 6)

When applied to d’Alembert’s principle, Hertz’s concerns appear perfectly reason-
able. In Newton’s first law, a body continues at a constant velocity unless it is
‘compelled to change its state by forces impressed’ and in the second law a force is
responsible for the ‘change in motion’. Forces of inertia, however, arise because a
body has changed its state of motion (i.e. because it is accelerating). Furthermore,
according to d’Alembert’s principle, forces are always balanced and systems are al-
ways in equilibrium. There is thus a palpable tension between the notion of a force of
inertia and the conception of force articulated in Newton’s first two laws of motion.

Here we have arrived at the deeper concern behind Hertz’s discussion of the
swinging stone. Recall that the initial worry was simply that in using the expression
‘centrifugal force’ we would be describing the wrong thing—we would be describing
the inertial force that would be experienced by an observer undergoing circular mo-
tion (such as an insect clinging to the stone) rather than the reaction force, required
by Newton’s third law, that acts from the stone on the hand. But this confused use of
terminology, on its own, is a relatively superficial complaint. The deeper ‘hindrance
to clear thinking,’ made particularly vivid by d’Alembert’s principle, is the introduc-
tion of the so-called inertial forces themselves. In fact, d’Alembert’s principle helps
to bring the importance of inertial forces to the surface, indicating that they may
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have just as much claim to reality as other kinds of forces. And here we can see
more clearly the tension that Hertz identifies between the notion of force articulated
in Newton’s first two laws and the notion of force articulated in Newton’s third law.
For with the d’Alembertian ‘reactions against acceleration’ in view, it now looks like
we have forces which are causes of accelerations, on the one hand, and forces which
are caused by accelerations, on the other.12

The worry that we no longer have a clear notion of force is compounded when
we consider how forces are recovered within the variational tradition considered on
its own terms. In this tradition, a system is typically described using an appropriate
set of general coordinates, qρ, and its equations of motion are derived from its La-
grangian, which is in turn characterized in terms of the system’s kinetic and potential
energy. A notion of force can then be recovered by considering the generalized forces,
Qρ, that are derivable from the system’s potential function, V :

Qρ =
∂V

∂qρ

Such ‘Lagrangian’ forces are typically not the familiar pushes and pulls that we
earlier labeled Newtonian forces. In particular, there is no need for them to be three-
dimensional; they can have as many dimensions as the system’s degrees of freedom.
Furthermore, because general coordinates do not have to have the dimensions of
position, Lagrangian forces do not even have to have the dimensions of force.13

At this juncture some might argue that Lagrangian forces should not be treated
as fundamental. After all, it is a strength of the variational approach that it char-
acterizes a system’s degrees of freedom without delving into that system’s mirco-
physical details. Indeed, it is widely assumed that—in a world governed by classical
mechanics—all material objects could ultimately be described in terms of a plethora
of Newtonian forces operating at the microscopic level.14 However, it is important to
note that no such foundational program has ever been successfully carried out. As
Wilson (2013) notes, attempts to construct macroscopic bodies starting with atomic
constituents runs into difficulties in specifying the special force laws which could
make an array of point-masses cohere into an extended body. Furthermore, going
on to specify how such a body responds under impacts, for example, can be ex-
tremely difficult, requiring modeling assumptions that plainly have ‘no relationship
to any structure present in real-life materials’ (Wilson, 2013, 68). Indeed, this fact

12For some further discussion of the connections between inertial forces and d’Alembert’s princi-
ple, see Lanczos (1962) 96-100.

13Nevertheless, Qρδqρ always has the dimensions of work; see Butterfield (2004) §3.3.1.B.
14For criticisms of such an assumption, see Wilson (2013) and Butterfield (2004).
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shouldn’t be particularly surprising—we have long since given up the expectation
that interactions at atomic length scales are governed by classical physics. Beyond
this, we have ample evidence that vectorial and variational approaches move in quite
different directions. On the one hand, we know that within the scope of classical me-
chanics vectorial techniques can accommodate systems with friction in ways that are
not possible using variational methods. (Recall that the restriction to conservative
systems with a scalar potential function was necessary in order to state d’Alembert’s
principle in the first place.) On the other hand, we know that many of the variational
principles originally developed in the context of classical physics now find a central
role in both relativity and quantum mechanics.

Returning to my more immediate goal, I hope to have shown that a considera-
tion of Thomson and Tait’s canonical approach—moving from an explicitly vectorial
treatment of Newton’s laws, then pivoting via the scholium attached to Newton’s
third law in order to articulate d’Alembert’s principle and thence to derive La-
grangian equations of motion—helps to flesh out Hertz’s suggestion that the origin
of his worries in the context of swinging a stone in a circle can be traced back to
Newton’s laws of motion. As Hertz specified: ‘the notion of force in the third law,
and the conception which the first two laws presume and suggest to us, seem to
me to be slightly different, and this slight difference may be enough to produce the
logical obscurity whose consequences are manifest in our example’ (Hertz, 1899, 6).
Hence we can appreciate Hertz’s motivation to clarify the structure and scope of
mechanics and, in particular, to seek out a unitary notion of force. As we turn to
examine how Hertz accomplished these tasks, it will be worth bearing in mind that
Hertz never regarded the lack of clarity in the customary representation as betraying
a fundamental problem in the theory. Indeed, Hertz stated that ‘the existing defects
are only defects in form’ and that ‘all indistinctness and uncertainty can be avoided
by suitable arrangement of definitions and notations, and by due care in the mode of
expression’ (Hertz, 1899, 9). Thus, if Hertz is successful in his task of clarification,
he will show us how the ambiguity in the customary notion of force can be avoided.

5 Hertz’s alternative approach

In his own presentation of mechanics, Hertz begins with just three primitive no-
tions: space, time, and mass. Furthermore, in contrast to Newton’s three laws of
motion, Hertz distils the core empirical content of classical mechanics into a single
‘fundamental law’:

Fundamental Law. Every free system persists in its state of rest or of
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uniform motion in a straightest path. (Hertz, 1899, §309)15

The possibility of describing all mechanical phenomena with this fundamental law
stems from the rich notion of a ‘straightest path’. In brief, Hertz deploys the ap-
paratus of differential geometry to construct configuration space representations of
mechanical systems. Each such configuration space has a certain number of dimen-
sions and a certain geometrical structure so that the path traced out by a single
point represents all the mechanical properties of the system. This path through
configuration space is the ‘straightest path’ of Hertz’s fundamental law.16

Note that the fundamental law applies only to ‘free’ systems; roughly, systems
that can be treated as isolated. As I will discuss in what follows, it was in order to
accommodate systems that are not free that Hertz introduced the notion of hidden
masses, a feature of Principles that baffled many of Hertz’s readers. Importantly,
this aspect of Hertz’s project is also closely connected with Hertz’s clarification of
the notion of force. To get clear on these matters, however, we must first unpack
the role that the notion of configuration space plays within Hertz’s framework more
generally.17

Consider again a system of n material points in which the position of the ν-th
point is (x3ν−2, x3ν−1, x3ν) and its mass is m3ν−2 = m3ν−1 = m3ν . Where Thomson
and Tait used constraint equations of the form f(x1, ..., x3n) = 0, Hertz instead uses
slightly more general ‘equations of condition’ of the form:18

3n∑
ν=1

xινdxν = 0

Here, the xιν are continuous functions of the coordinates xν . As before, if there are
m connections between the points there will be m equations of condition (so that
the index ι runs from 1 to m). Using these rectangular coordinates, the system
will have a configuration space of 3n dimensions. However, each connection lowers
the number of the system’s degrees of freedom by one and makes the region of
the system’s configuration space which corresponds to “breaking” that connection
inaccessible. Thus each connection defines a hypersurface of (3n − 1) dimensions

15From this point onwards, a section number without a further citation will be used to refer to
passages from the main body of Principles.

16The geometry of configuration space incorporates information about the mass-distribution of
the system; see Eisenthal (2018) 48-49 for some discussion.

17Note that this way of putting it is anachronistic insofar as Hertz himself never used the term
‘configuration space.’ Indeed, Hertz was keen to separate the apparatus of high-dimensional geom-
etry from any connotations of a high-dimensional “space”—see Hertz (1899) 30.

18See §§125–128.
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within the system’s full 3n-dimensional configuration space. The accessible region
of configuration space will have a total of 3n−m dimensions: the intersection of all
the hypersurfaces determined by the connections. Hertz’s fundamental law asserts
that the motion of a free system always traces out a straightest path on this curved
hypersurface embedded within its 3n-dimensional configuration space.

A more abstract and more powerful characterization of a system can be achieved
by describing it in terms of its general coordinates, qρ.

19 Introducing ‘qχρ’ as contin-
uous functions of these coordinates (§130), the equations of condition can then be
expressed via:

r∑
ρ=1

qχρdqρ = 0

For a large class of mechanical systems, the use of general coordinates leads to a par-
ticularly elegant characterization of a system’s configuration space: the coordinates
characterize a curved (Riemannian) space with the same number of dimensions as
the system’s degrees of freedom. By using these coordinates we arrive immediately
at the relevant “surface” of possible motions—the embedding space of impossible
motions has disappeared from view.20

As noted above, Hertz’s fundamental law only applies to free systems and hence
fails to apply to systems that are not free, such as systems acted on by forces. This
brings us to the most notorious feature of Hertz’s framework—the notion of hidden
masses. In order to accommodate systems acted on by forces, Hertz re-defines a
force as the effect one system has on another when the two are coupled together
(§455). Note that if one coupled system is ‘hidden’ then what is observable is a
partial system that seems to violate the fundamental law. From Hertz’s perspective
any apparently unfree system is regarded as a partial system, so that every com-
plete system (including any hidden masses) still follows the straightest path in its
configuration space.21

Hertz considers two classes of partial systems: guided systems and systems acted
on by forces. In the latter case, two (or more) material systems form a combined
system by having at least one coordinate in common. Such systems are thereby

19Note that, for consistency, I am using qρ to represent general coordinates even though Hertz
himself uses pρ. I will also continue to use Qρ to represent generalized forces even though Hertz
uses Pρ.

20For a more detailed discussion, see Eisenthal (forthcoming) §3.
21‘Every unfree system we conceive to be a portion of a more extended free system; from our

point of view there are no unfree systems for which this assumption does not obtain.’ (§429)
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‘coupled’ to one another (§450). It is here, then, that we find Hertz’s re-introduction
of the notion of force:

By a force we understand the independently conceived effect which one
of two coupled systems, as a consequence of the fundamental law, exerts
upon the motion of the other. (§455)

Let the r coordinates qρ and the r coordinates qρ describe two coupled systems,
A and B, respectively, and let us arrange the indices so that the common coordinates
in both systems have the same index. Hence the fact that the systems are coupled
is expressed via the condition that, for at least one value of ρ:

qρ − qρ = 0

As this holds continually, we also have:

dqρ − dqρ = 0

Each of the coupled systems has its own equations of condition. In general coordi-
nates, these are expressed as follows:

r∑
ρ=1

qχρdqρ = 0

r∑
ρ=1

qχρdqρ = 0

We are seeking an expression for the effect that one coupled system has upon the
other, and hence the force (as Hertz defines that term) that it exerts. Let us consider
the force that the system B exerts on the system A.22 For the uncoupled coordinates,
the equations of motion of the system have the following form (§457):

mfρ +
k∑

χ=1

qχρQχ = 0

Here, fρ is a generalized acceleration vector, defined as the rate of change of the
system’s velocity (§273). The qχρ are the same factors that appear in the system’s

22We could, of course, equally well consider the effect that the system A has on the system B. As
Hertz stresses (§456), which of these effects should be called the ‘force’ and which the ‘counterforce’
is arbitrary.
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equations of condition, whilst the Qχ incorporate information about the curvature
of the system’s path. The only difference for the coupled coordinates turns out to be
that we need to include an extra factor, Qρ, in these equations (§457):

mfρ +
k∑

χ=1

qχρQχ −Qρ = 0

By setting Qρ = 0 for all values of ρ that are not coupled coordinates, this can be used
as a more general expression for the equations of motion for the system (§459). Thus
the quantities Qρ ‘forms the analytical expression for the force which the system qρ
exerts on the system qρ’ (§460). Indeed: ‘By this determination we place ourselves
in agreement with the existing notation of mechanics; and the necessity for securing
such an agreement sufficiently justifies us in choosing this particular determination
out of several permissible ones’ (§460).

Before turning to consider what Hertz has hereby achieved, it is important to
note that the introduction of hidden masses can seem a heavy price to pay. In
particular, without some reason to believe in the actual existence of such hidden
masses, Hertz’s approach can appear remarkably speculative. Indeed, this was the
reaction of many of Hertz’s contemporaries. Mach, for example, wrote that working
out the details of a Hertzian system of hidden masses would oblige one ‘to resort,
even in simplest cases, to fantastic and even frequently questionable fictions’ (Mach,
1960, p. 323). Helmholtz and Boltzmann raised similar concerns,23 and this reaction
to Hertz’s project persists to the present day.24

However, a more satisfying interpretation of Principles is readily available. Within
Hertz’s framework, systems which have identical degrees of freedom will have identi-
cal configuration space representations even if they are otherwise quite different from
one another. For example, because a simple pendulum, a mass on a spring, and a
vibrating string are all simple harmonic oscillators with a single degree of freedom,
they are all represented by the same configuration space. These are Hertz’s dynam-
ical models : two systems are dynamical models of one another just in case they

23In the introduction that he wrote for Principles, Helmholtz commented: ‘Unfortunately [Hertz]
has not given examples illustrating the manner in which he supposed such hypothetical mechanism
to act; to explain even the simplest cases of physical forces on these lines will clearly require much
scientific insight and imaginative power’ (Hertz, 1899, xx). In the same vein, Boltzmann remarked,
‘so long as even in the simplest cases no systems or only unduly complicated systems of hidden
masses can be found that would solve the problem in the sense of Hertz’s theory, the latter is only
of purely academic interest’ (Boltzmann, 1974, 90).

24See, for example, Lützen (2005) 278 and Mulligan (1998) 178. For a criticism of this tendency
to interpret Hertz’s hypothesis of hidden masses as surprisingly speculative, see Eisenthal (2018)

19



have identical configuration spaces.25 Hence systems which vary widely in terms of
their ontological constitution can nevertheless be dynamically similar in the relevant
sense:

An infinite number of systems, quite different physically, can be models
of one and the same system. Any given system is a model of an infinite
number of totally different systems. (§421)

This is crucial for making sense of Hertz’s appeal to hidden masses. By hypothe-
sis, the hidden nature of those masses means that there is no way to determine which
member of a family of dynamically similar systems is the true representation of the
target phenomenon. Hertz exploits this feature of his framework to make clear that,
from the perspective provided by Principles, there is nothing further to learn about
a mechanical system than what can be gathered from a dynamical model of that
system. Once the hypothesis of hidden masses is accepted, we have ‘no knowledge
as to whether the systems which we consider in mechanics agree in any other respect
with the actual systems of nature which we intend to consider, than in this alone,
that the one set of systems are models of the other’ (§427). With this in view, we
can see that Hertz’s introduction of hidden masses should not be understood as a
speculative ontological gambit. Rather, Hertz recognized that in order to derive the
correct equations of motion for unfree systems he only needed to be able to construct
the appropriate dynamical models.26 He thus helped himself to the analytical tools
that he needed in order to be able to complete this task. With this in view, let us
turn to consider the advantages of the unitary notion of force that Hertz has derived.

6 Hertz’s notion of force

Hertz’s notion of force adds nothing beyond the application of the fundamental law to
a system of connected material points. Even so, Hertz is able to show that his notion
is in accord with the notion of force in the customary representation of mechanics to
a remarkable degree.

Most immediately, Hertz’s forces are vector quantities (of various dimensions),
both with regard to the systems that exert them and with regard to the systems
that they are exerted on. All the expected compositional properties of forces are

25See §§418-428; for some discussion see Eisenthal (2018) 54.
26‘In order to determine beforehand the course of the natural motion of a material system, it is

sufficient to have a model of that system. The model may be much simpler than the system whose
motion it represents’ (§425).
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thus recovered: multiple forces can be added together to form a resultant force, and
a single force can be analysed into components (§§461 ff.). Hertz also points out
that various different systems can exert the same force on a given system, and also
that one given system can exert the same force on various different systems. Hence
a force itself (considered simply as a certain vector quantity) can be considered on
its own terms, independently of the partial system that is, so to speak, responsible
for it (§§464-465).

Hertz also derives sharpened up versions of Newton’s three laws of motion, making
explicit that the clearest and least ambiguous applications of the laws are to systems
consisting of a single point.27 Regarding the first law, Hertz first observes that a free
system with no connections ‘persists in its condition of rest or uniform motion in a
straight path’ (§382). This is just because, in the absence of any connections, the
straightest path in configuration space is indeed the straight path. Hertz then notes
that Newton’s first law follows as a corollary of this fact concerning connection-free
systems in general, because it will obviously apply to a system consisting of a single
material point:

A free material point persists in its condition of rest or uniform motion in
a straight path (Galileo’s Law of Inertia or Newton’s First Law). (§383)

Regarding the second law, Hertz similarly shows that if a system with no con-
nections accelerates (i.e. by being coupled with another system, hence having a
force exerted on it), then that acceleration ‘takes place in the direction of the force
which acts on the system, and its magnitude is equal to the magnitude of the force,
divided by the mass of the system’ (§494). What this motion will look like will of
course depend entirely on the force in question (i.e. how this connection-free system
is coupled to some other system). However, in the limiting case where the system
we are considering consists of just one material point, its acceleration can always be
given by an ordinary three-dimensional vector. Hence Hertz takes the case of a single
point—again as the limiting case of a system without connections—as corresponding
to a statement of Newton’s second law:

The acceleration of a single material point takes place in the direction of
the force acting on it, and its magnitude is equal to the magnitude of the
force, divided by the mass of the point (Newton’s second law). (§495)

27For Hertz, an isolated point is a rather special case: ‘in reality, the material particle is simply
an abstraction, whereas the material system is presented directly to us. All actual experience is
obtained directly from systems; and it is only by processes of reasoning that we deduce conclusions
as to possible experiences with single points’ (Hertz, 1899, 31).
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The case of the third law is more subtle: Hertz derives an action-reaction principle
that has a close relationship with Newton’s third law but is not equivalent to it (even
for a single point). Earlier, we defined the vector Qρ as the force which the system B
exerts on the system A. This is a vector quantity with regard to system A because it
gives the components of the force along the coordinates qρ. If we wish to regard this
force as a vector quantity with regard to system B, it’s components along qρ can be
denoted Q′

ρ. Similarly, we can consider the “counterforce” that the system A exerts
on the system B. The components of this force along the coordinates of system B
are then denoted by Qρ, and, as before, if we consider this force as a vector quantity
with regard to system A, this is denoted by Q′ρ. Hertz then shows (§467) that:

Qρ = −Qρ
28

However, Hertz is careful to delineate this result from Newton’s third law. The key
difference lies in the fact that Newton’s action-reaction principle, unlike Hertz’s, is
intended to apply to actions-at-a-distance:

Newton’s Law, as he intended it to be understood, contains our proposi-
tion completely; this is shown by the examples appended to his statement
of the law. But Newton’s Law contains more. At least it is usually ap-
plied to actions-at-a-distance, i.e. to forces between bodies which have no
common coordinates. But our mechanics does not recognise such actions.
(§469)

Hertz argues that where Newton’s action-reaction principle deviates from his own
is precisely where it is open to criticism. Firstly, unless the two bodies are point-
masses, the line connecting them (along which the two forces are supposed to be equal
and opposite) is open to ambiguity—for two extended bodies there is no immediate
way to determine at what point and in what direction the forces in question act.29

Secondly, as experimental results had been starting to show in Hertz’s lifetime, the
validity of the third law was called into question when applied to electromagnetic
interactions between distant bodies.30

Most importantly for present purposes, Hertz’s framework offers a thorough clar-
ification of the relationship between Newtonian and Lagrangian forces. In line with

28Or, equivalently: Q′
ρ = −Q′

ρ. Hence Qρ = −Q′
ρ, Qρ = −Q′

ρ.
29Karl Pearson expressed this concern as follows: ‘the mutual action of two bodies is more complex

than a reader just starting his study of mechanism would imagine, if he naturally interpreted mutual
action as corresponding to mutual acceleration in some one line’ (Pearson, 1957, p. 324).

30See §470.
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his re-statement of Newton’s laws of motion, Hertz identifies the vectorial notion of
force with the force on a single point. This is the class of Hertzian forces which are
represented by ordinary three-dimensional vectors. Thus Hertz recovers a picture
of ‘elementary mechanics’: Newtonian (three-dimensional) forces acting on point-
masses. In contrast, Hertz calls the more general (higher-dimensional) forces La-
grangian:

As a rule, elementary mechanics means by forces only elementary forces.
By way of distinction, the more general forms of forces hitherto considered
by us are denoted as Lagrangian forces. Similarly we might denote the
elementary forces as Galilean or Newtonian forces. (§476)

The fact that every system can be conceived as composed of material point in three-
dimensional Euclidean space means that every Lagrangian force can be conceived
as decomposable into elementary Newtonian forces (§479). Although in many cases
such a decomposition is highly arbitrary, the key point is that, from the perspective
provided by Hertz’s framework, the relationship between general (Lagrangian) and
elementary (Newtonian) forces is unproblematic.

In summary, Hertz’s notion of force is introduced as a way to succinctly capture
the effect that one system can have on another when the two are coupled together
to form a combined system. In the general case, this is best represented by the
high-dimensional Lagrangian forces that are typically tied to a system’s degrees of
freedom. Derivatively, we can recover the three-dimensional vectors in ordinary
space that correspond to Netwonian forces, either on individual points making up a
complex system, or on a single isolated point on its own.

Before concluding, let us return once more to Hertz’s example of the swinging
stone. Recall that we identified two potential obscurities in this case. The first
was that appealing to centrifugal force—an inertial force experienced by an observer
undergoing circular motion—seemed the wrong way to account for the reaction force
from the stone on the hand. The second and deeper source of confusion, however,
was linked to the introduction of inertial forces themselves. As Hertz wrote, ‘In our
laws of motion, force was a cause of motion, and was present before the motion.
Can we, without confusing our ideas, suddenly begin to speak of forces which are a
consequence of motion?’ (Hertz, 1899, 6)

In the context of Hertz’s formulation of mechanics this tension is resolved in the
following way. As we have seen, according to Hertz’s fundamental law, ‘whenever
two bodies belong to the same system, the motion of one is determined by that of
the other’ (Hertz, 1899, 28). The notion of force is then re-introduced because it is
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often convenient ‘to divide the determination of the one motion by the other into
two steps’:

We thus say that the motion of the first body determines a force, and
that this force then determines the motion of the second body. In this
way force can with equal justice be regarded as being always a cause of
motion, and at the same time a consequence of motion. Strictly speaking,
it is a middle term conceived only between two motions. (Hertz, 1899,
28)

From Hertz’s perspective, we appeal to forces when we only have partial knowledge
of the system at hand—when we do not know the details of the complete free system
of which it is a part. Unsurprisingly, however, these are the kinds of systems that we
encounter most often, and in fact they constitute many of the paradigm examples
in the customary representation of mechanics.31 Nevertheless, Hertz urges us to
recognize that if we adopt the definition of force that his reformulation of mechanics
makes available, the confusing aspects of forces will dissolve. In particular, we will
be able to accept that, in a certain sense, forces can be regarded as causes of motion
or as caused by motion, depending on our perspective on the particular problem at
hand.

7 Conclusion

The goals of this paper have been two-fold. First, I hope to have unearthed the
source of the ‘logical obscurity’ in the customary notion of force that troubled Hertz.
Second, I hope to have shown how Hertz employed the apparatus of differential
geometry to provide a unitary—hence unambiguous—notion of force. With regard
to my first goal, I have argued that a subtle ambiguity in Newton’s original laws of
motion led to the emergence of two slightly different notions of force—Newtonian
and Lagrangian—the relationship between which was obscured in the customary
representation of mechanics. With regard to my second goal, I argued that to avoid
these difficulties Hertz re-defined a force as the effect that one coupled sub-system
has on the motion of another. With this in hand, Hertz was then able to recover
logically perspicuous versions of Newton’s three laws of motion and also able to
show how Newtonian and Lagrangian forces can be related to one another in a clear

31As Hertz puts it, a system acted on by forces (or another kind of partial system) ‘which is
the remote and special case from the standpoint of our mechanics, is the commonest case in the
problems which occur in daily life and in the arts’ (Hertz, 1899, 39-40).
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and unproblematic way. In passing, I noted that Hertz appeared to many of his
readers to rely on an unusual and speculative ontology, particularly with regard to
his introduction of hidden masses. But on this matter I argued that it was crucial to
recognise that Hertz was only concerned to construct appropriate dynamical models
of mechanical systems, and explicitly disavowed that these models would capture
the ontological constitution of their targets. With this in view, we can appreciate
that Hertz was deploying the mathematical apparatus of differential geometry to
provide a uniform representation of all mechanical systems, so that all mechanical
phenomena could be seen to fall under a single ‘fundamental law’.

Recall that in offering a unitary notion of force, Hertz did not regard himself
as having thereby answered the question: what is the essence of force? Rather,
by disentangling the conflicting demands on the notion of force that arose in the
customary formulation of mechanics, Hertz believed that confused questions as to its
essence would no longer arise (that ‘our minds, no longer vexed, would cease to ask
illegitimate questions’). One final hope of this paper is to have shed some light on
what this avoidance of confused questions amounted to.
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